مکان‌یابی ژن‌های کنترل‌کننده صفات زراعی در جو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه گنبدکاووس، ایران

2 دانشیار، گروه تولیدات گیاهی، دانشکده کشاورزی، دانشگاه گنبدکاووس، ایران

3 استادیار پژوهش بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی مازندران، سازمان تحقیقات آموزش و ترویج کشاورزی، ساری، ایران

4 استادیار، گروه زیست‌شناسی، دانشکده کشاورزی، دانشگاه گنبد کاووس، ایران

چکیده

به­منظور نقشه­یابی QTLهای کنترل­کننده برخی صفات زراعی در جو، آزمایشی در قالب طرح بلوک­های کامل تصادفی با سه تکرار در مزرعه پژوهشی دانشگاه گنبدکاووس اجرا شد. مواد گیاهی شامل 100 خانواده نسل 3F جو حاصل از تلاقی ارقام بادیا× کومینو بود. نتایج تجزیه واریانس نشان داد که اختلاف خانواده­ها برای کلیه صفات به‌جز وزن سنبله و تعداد سنبلچه در سنبله در سطح یک درصد معنی­دار می­باشد. برای صفات مورد ارزیابی تفکیک متجاوز مشاهده شد که نشان­دهنده وجود ترکیبات آللی متفاوت در والدین است. نقشه پیوستگی با استفاده از 7 نشانگر SSR و 69 آلل چند شکل iPBS تهیه شد که 2/632 سانتی‌مورگان از ژنوم جو را پوشش می­داد. در مجموع 4 QTL برای صفات تعداد بذر جوانه‌زده، تعداد روز تا رسیدگی فیزیولوژیک، تعداد کل پنجه و وزن سنبله شناسایی گردید. حداکثر تغییرات فنوتیپی توجیه‌شده توسط QTLها 4/11 درصد بود. بررسی مکان­های ژنی شناسایی‌شده نشان داد QTL­های qNS-6، qTT-6 هم­مکان بودند.

کلیدواژه‌ها


عنوان مقاله [English]

QTL mapping of agronomical traits in Barley

نویسندگان [English]

  • Atefeh Kaviani Cherati 1
  • Hossein Sabouri 2
  • Hossein Ali Fallahi 3
  • Eisa Jorjani 4
1 Former M. Sc. Student of Agricultural Biotechnology, Gonbad Kavous University, Iran
2 Associate Professor, Department of Plant Propduction, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Iran
3 Assistance professor, Agronomic and Horticultural Research Department, Research and Education Center of Agriculture and Natural Resources of Mazandaran, Agricultural Extension and Education Research Organization, Sari, Iran
4 Assistance Professor, Department of Biology, Gonbad Kavous University, Iran
چکیده [English]

In order to QTL mapping of agronomical traits in barley, experiment was conducted based in a randomized complete block design with three replications at research field of Gonbad Kavous University. Plant materials were 100 families of F3 barley derived from cross Badia × Komino cultivars. Analysis of variance showed  that difference of families all traits except spike weight and spikelet no./spike was positive and significant. Transgressive segregation was observed for all traits indicating  the presence of different allele combinations in the parents. Linkage map whit 7 (SSR) markers and 69 polymorphic alleles (iPBS) were prepared which covered 632.2 cM of  barley genome. In general, four QTLs were detected for traits number of seedlings, days to maturity, tiller number and spike weight. The maximum percentage of Phenotypic variance (R2) explained by QTLs was 11.4 percent. Review identified genetic locations showed QTLs of qNS-6, qTT-6 were co-localized.

کلیدواژه‌ها [English]

  • Genetic map
  • iPBS
  • Molecular markers
  • QTL
  1. امام ی (1386) تولید غلات. جلد سوم، انتشارات دانشگاه شیراز، شیراز. 190 صفحه.
  2. فتوکیان م ح (1380) بررسی ژن­های کنترل­کننده تحمل به شوری و کیفیت دانه در برنج. دانشکده کشاورزی دانشگاه تهران. تهران. رساله دکتری.
  3. کاویانی چراتی ع.، صبوری ح. فلاحی ح. ع. و جرجانی ع (1395) مکان­یابی QTLهای مرتبط به خصوصیات سنبله با استفاده از خانواده­های F3 و F4 جو حاصل از تلاقی بادیا و کومینو. پژوهش­های ژنتیک گیاهی. 3(1): 28-13.
  4. یزدی صمدی ب.، محمدی و. ا. و عبدمیشانی س (1389) به‌نژادی گیاهان زراعی. مرکز نشر دانشگاهی، تهران، 408 صفحه.
  5. Alam MZ, Haider SA and Paul NK (2007) Yield and yield components of barley (Hordeum vulgare L.) cultivars in relation to nitrogen fertilizer. Agriculture Science Research. 3(10): 1022-1026.
  6. Baghizadeh A, Taeeiand AR and Naghavi MR (2007) QTL analysis for some agronomic traits in Barley (Hordeum vulgare L.). International Journal of Agriculture and Biology. 2: 372-374.
  7. Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991) Fast and Sentetive silver staning of DNA in polyacrilamid gels. Analytical Bichemistry. 196: 80-83.
  8. Darvasi A, Weintreb A, Minke A, Weiier J and Soller M (1993) Detecting marker QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 134: 943-951.
  9. Doerg RW (2002) Mapping and analysis of quantitative trait loci iexperimental populations. Nature Reviews Genetics. 3: 43-52.
  10. Doyle JJ and Doyle JL (1990) Arapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19: 11-15.
  11. Eshghi R, Salayeva S, Ebrahimpour F, Rahimi M, Baraty M and Ojaghi J (2013) Advanced-backcross QTL analysis in hulless barley: I. Detection of exotic alleles for yield and yield components introgressed from Hordeum vulgare ssp. Spontaneum. International Journal of Agriculture and Crop Sciences. 5(2): 95-100.
  12. Falconer DS (1989) Introduction to Quantitative Genetics. (3rd edition) Longman. New York, 415 pp.
  13. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R and Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and eterogeneous in higher plants. Oxford Journal. 20: 3639-3644.
  14. Gerhard H (2002) The search for QTL in barley using a new mapping population. Cellular and Molecular Biology Letters. 7: 523-535.
  15. Goldstein DB and Schlotterer C (2000) Microsatellites, Evolution and Application. Oxford University press, New York, 165-182 pp.
  16. Gupta PK and Varshney RK (2000) The development and use of microsatellite markers for genetic and analysis and plant breeding with emphasis on bread wheat. Euphytica. 113: 163-185.
  17. Kumar A and Bennetzen JL (1999) Plant retrotransposons. Annual Review of Genetics. 33: 479-532.
  18. Linge SS, Kalpande HV, Sawargaonkar SL,  Hudge BV and Thanki HP (2010) Study of genetic variability and correlation in interspecific derivatives of Pigeonpea (Cajanus cajan L. Millsp). Plant Breeding. 1: 929-935.
  19. Manly KF and Olson JM (1999) Overview of QTL mapping software and introduction to Map Manager QTL. Mammalian Genome. 10: 327-334.
  20. Marza FG, Bai HB, Carver F and Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theoretical and Applied Genetics. 112: 688-698.
  21. McCouch SR, Cho YG, Yano M, Paul E and Blinstrub M (1997) Report on QTL nomenclature. Rice Genetic Newsletter. 14: 11-13.
  22. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Molecular Breeding. 3(3): 239-245.
  23. Peighambari SA, Yazdi Samadi B, Nabipour A, Charmet G and Sarrafi A (2005) QTL analysis for agronomic traits in barley doubled haploids population grown in Iran. Plant Science. 169: 1008-1013.
  24. Singh RK and Chaudhary BD (1985) Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, Ludhiana, India, 318p.
  25. Von Korff M, Grando S, Del Greco A, This D, Baum M and Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics. 117(5): 653-669.
  26. Xue DW, Zhou MX, Zhang XQ, Chen S, Wei K, Zeng FR, Mao Y, Wu FB and Zhang GP (2010) Identification of QTLs for yield and yield components of barley under different growth conditions. Journal of Zhejiang University-SCIENCE B (Biomedicine and Biotechnology). 11(3): 169-176.
  27. Zeng ZB  (1994) Precision mapping of quantitative trait loci. Genetics. 136: 1457-1468.