مصطفوی خ.، ر. چوکان.، م. ر. بیهمتا.، ا. مجیدی هروان و م. تائب (1389) مطالعه ژنتیکی عملکرد و صفات وابسته در ذرت Zea mays L.)) با استفاده از تجزیه گرافیکی دایآلل. مجله زراعت و اصلاح نباتات. 6(3): 129-117.
Andjelkovic V, Ignjatovic-Micic D, Mladenovic S and Vancetovic J (2012) Implementation of maize gentic resources in drought tolerance and grain quality improvement at maize research institute. “Zemun Polje”. Thiyrd International Scientific Smposium. 10.7251/AGSY1203429A. UDK 631. 147: 633.15.
Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
Blanco IA, Rajaram S, Kronstad WE and Reynolds MO (2000) Physiological performance of synthetice hexaploid wheatderived populations. Crop Science. 40: 1257-1263.
Chohan MSM, Saleem M, Ahsan m and Asghar M (2012) Genetic analysis of water stress tolerance and various morpho-physiological traits in Zea mays L. using graphical approach. Pakistan Journal of Nutrition. 11(5): 489-500.
Dedio W (1975) Water relations in wheat leaves as screening tests for drought resistance. Canadian Journal of Plant Science. 55: 369-378.
Davies DD, Giovanelli J and Rees T (1964) Plant biochemistry. Blackwell Scientific Publications, Oxford. UK.
Falconer DS (1989) Introduction to quantitative genetics. Longman Group Ltd. London. FAO (2010) Statistical data. www. FAOSTAT. Org.
Farooq M, Wahid A, Kobayashi N, Fujita D and Basra SM (2009) Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 29: 185-212.
Gaffney J, Schussler J, Loffler C, Cai W, Paszkiewicz S, Messina C, Groeteke J, Keaschall J and Cooper M (2015) Industry-scale evaluation of maize hybrids selected for increased yield in drought-stress conditions of the US Corn Belt. Crop Science. 55:1608–1618.
Hayman BI (1957) Interaction, heterosis and diallel crosses. Genetics. 42: 33-35.
Hussain M, Shah KN, Ghafoor A, Kiani TT and Mahmood T (2014) Genetic analysisfor grain yield and various morfological traits in corn (Zea mays L) under normal and water stress environmets. The Journal of Animal and Plant Sciences, 24(4): 1230-1240.
Jiang Y and Hung B (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science. 41: 436-442.
Jinks JL and Hayman BI (1953) The analysis of diallel crosses. Maize Genetics Cooperation Newsletter. 27: 48-54.
Khakwani AA, Dearin M and Munir M (2011) Drought tolerance screening of wheat varieties by inducing water stress conditions. Songklanakarin Journal of Science & Technology. 33: 135-142.
Koc M, Barutcular C and Genc I (2003) Photosynthesis and productivity of old and modern durum vheats in Mediterranean environment. Crop Science. 43: 2089-2098.
Kondo M, Pablico PP, Aragones DV, Agbisit R, Abe J, Morita S and Courtois B (2003) Genototypic and environmental variation in root morphology in rice genotypes under upland field conditions. In: Abe, J. (ed.), Roots: The dynamic Interface between Plants and the Earth. The Sixth Symposium of the International Society of Root Research. Speciial issue Plant and Soil. 255: 189-200.
Manivannan P, Abdul Jaleel C, Sankar B, Kishorekumar A, Somasundaram D, Lakshmanan GMA and Panneerselvam R (2007) Growth, Biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces. 59:141–149.
Mohammadi-Sarab-Badieh M, Farshadfar E, Haghparast R, Rajabi R and Zarei L (2012) Evaluation of gene actions of some traits contributing in drought tolerance in bread wheat utilizing diallel analysis. Annals of Biological Research. 3(7): 3591-3596.
Moll RH and Stuber CW (1974) Quantitative genetics: Imperical results relevant to plant breeding. Advance Agronomy. 26: 277-313.
Moradi M, Choukan R, MajidiHeravan E and Bihamta MR (2014) Genetic analysis of various morpho-physiological traits in maize using graphical approach under normal and water stress conditions. Research on Crops. 15(1): 62-70.
Naroui-Rad MR, Abdul-Kadir M and Yusop MR (2012) Genetic behaviour for plant capacity to produce chlorophyll in wheat (Triticum aestivum L) under drought stress. 6(3): 415-420.
Schonfeld MA, Johnson RC, Carver BF and Mornhinweg DW (1988) Water relations in winter wheat as drought resistance indicators. Crop Science. 28: 526-531.
Smith S and Smet I (2012) Phil. Trans. R. Soc Root system architecture: Insights from Arabidopsis and cereal crops. B. 365(1595): 1441-1452.
Teulat B, Borries C and This D (2001) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth chamber under two water regimes. Theoritical Appllied Genetic. 103: 161-170.
Tuberosa R (2011) Phenotyping for drought tolerance of cropin the genomics era: Key concepts, issues and approaches. University of Bolongna, Italy. Frontiers in Physiology Journal. 3: 1-26.
Vaezi B, Borman V and Shiran B (2010) Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. African Journal of Agricultural Research. 5: 881-89.
Von Braun J, Byerlee D, Charters C, Lumpkin T, Olembo N and Waage J (2010) A draft strategy and results framework for the CGIAR. The world bank, Washington DC.
Zhang K, Zhang Y, Chen G and Tian J (2009) Genetic Analysis of Grain Yield and Leaf Chlorophyll Content in Common Wheat. Cereal Res Communications. 37: 499-511.
Ziyomo C and Bernardo R (2013) Drought tolerance in maize: Indirect selection through secondary traits versus genome-wide selection. Crop Science. 53: 1269-1275.