دزیابی و امکان‌سنجی اصلاح زنبق ایرانی با استفاده از پرتو گاما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری باغبانی، دانشکده کشاورزی، دانشگاه زنجان، ایران

2 دانشیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، ایران

چکیده

جهت دزیابی و امکان‌سنجی اصلاح زنبق ایرانی Iris persica با استفاده از موتاژن فیزیکی پرتو گاما، آزمایشی در قالب طرح بلوک­های کامل تصادفی در 4 تکرار در مزرعه‌ای واقع در شهرستان خرمدره و پژوهشکده زیست‌فناوری زنجان، طی سال‌های 1391 تا 1393 انجام گرفت و تغییرات مرفولوژیکی، فیزیولوژیکی، بیوشیمیایی و سیتوژنتیکی بررسی گردید. LD50 برای گیاه زنبق ایرانی 15 گری و برای دانه­های گرده آن 22 گری تعیین شد. افزایش دز موتاژن فیزیکی پرتوگاما تا 5 گری سبب تغییرات مرفولوژیکی در گیاه شد، گل­ها نسبت به شاهد 12 روز زودتر باز شدند و میزان تمایل گل­ها به سمت رنگ آبی روشن نسبت به سایر تیمارها و شاهد (­گل­های سفیدرنگ) بیشتر بود. هم‌چنین در این تیمار افزایش معنی­داری در میزان تجمع آنتوسیانین و فلاونوئید کل در گلبرگ­ها مشاهده گردید. با افزایش در پرتو گاما تا 25 گری کاهش معنی­داری در ویژگی­های مورفولوژیکی و افزایش معنی­داری در تجمع کارتنوئید در گلبرگ­ها، کلروفیل کل، پرولین، کربوهیدرات کل و فعالیت پلی‌فنل‌اکسیداز مشاهده گردید. هم‌چنین با افزایش دز پرتوگاما کاهش معنی­داری در طول کروموزوم­ها و شاخص درصد شکل کلی کروموزوم­ها مشاهده و درصد کروموزوم­های غیر نرمال بیشتر شد و اختلالات کروموزومی شامل Bridge و Isolated مشاهده گردید. با توجه به نتایج حاصل دز 5 گری تأثیر معنی­داری در جهت تغییر رنگ در گونه زنبق پرسیکا داشته و می­تواند جهت کارهای اصلاحی مربوط به تغییر رنگ و بهنژادی این گیاه موردتوجه قرار گیرد. توصیه می­گردد که دزهای پایین‌تر از 5 گری جهت اصلاح زنبق گونه پرسیکا مدنظر قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

The assessment and feasibility of breeding study in Iris persica by gamma-ray

نویسندگان [English]

  • Somayyeh Jozghasemi 1
  • Vali Rabiei 2
1 Former Ph.D. Student, Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Associate Professor, Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

The effect of gamma rays was studied on the feasibility of breeding the Iris persica L. The experimental design was a randomized complete block  design with 4 replications in a farm located in the Khorramdarreh city and Biotechnology Institute of Zanjan since 2012 to 2014 years. In this experiment, were investigated the morphological, physiological, biochemical and cytogenetic changes. LD50 were determined 15 Gy for Iris persica plant and 22Gy for pollen grain. Increase physical mutagen dose of5 Gy of gamma radiation was to cause morphological changes in the plant, flowers were opened 12days earlier than control, and the tendency towards were higher bright blue flowers compared to other treatments and control (white flowers).Also in this treatment was observed petals a significant increase in the accumulation of anthocyanins and total flavonoids. With the increasein gamma radiationto25 Gy was observed the significant decrease in morphological characteristics, But by increasing the dose of physical mutagen, a significant increase was observed in the accumulation of carotenoids in the petals, total chlorophyll, proline, carbohydrate and polyphenol oxidase activity, also, by increasing the dose of gamma rays observed a significant reduction in the length of chromosome and significantly lower the percentage of TF, and were increase the percentage of abnormal chromosomes, and chromosomal abnormality were observed includes Bridge and Isolated. According to the results, 5 Gy dose had significant effect to breeding Iris persica and can be considered for revision and plant breeding.

کلیدواژه‌ها [English]

  • Anthocyanin
  • chromosome
  • flower color
  • polyphenol oxidase
  • Prolin
  • total charbohydrate
  1. جلیلی مرندی ر (1391) فیزیولوژی پس از برداشت. انتشارات جهاد دانشگاهی ارومیه. 517-551.
  2. حسیبی پ (1386) بررسی فیزیولوژیکی اثر تنش سرما در مرحله گیاهچه­ای ژنوتیپ­های مختلف برنج. رساله دکتری دانشگاه شهید چمران اهواز. 145.
  3. ربیعی و و جزقاسمی س (1392) روش­های کاربردی آزمایشگاهی درعلوم باغی وزراعی. انتشارات جهاد دانشگاهی آذربایجان­غربی.
  4. عالی­شاه ع و امیدی م (1387) روش­های آزمایشگاهی سیتوزنتیک، مؤسسه انتشارات و چاپ دانشگاه تهران.
  5. فرحناکی ع عسکری ح. و مصباحی غ (1388). تحلیل تغییرات رنگ رطب در طی خشک کردن با خشک کن کابینی با استفاده از روش عکسبرداری دیجیتالی. فصلنامه علوم و صنایع غذایی. 2.
  6. مجد ف و اردکانی م ر (1382). تکنیک­های هسته­ای در علوم کشاورزی. انتشارات دانشگاه تهران.
  7. نعمت­زاده ق و کیانی غ (1389) اصلاح نباتات (روش‌های کلاسیک). انتشارات پژوهشکده برنج و مرکبات.
  8. Amano E and Takashi Y (2001) Radiation sensitivity of plants,Inst.Rad.Breed. Inst. of Veg. Orn. Plants and Tea, pp. 1-18.
  9. Arnon D I (1949) Plant physiology,pp.1-24
  10. Arias D (2007) Calibration of LAI-2000 to estimate leaf area index and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica. Forest Ecology and Management, 247: 185-193.
  11. Akshatha K and Chandrashekar R(2013) Effect of gamma irradiation on germination growth and biochemical parameters of Pterocarpus santalinus, and endangered species of eastern chats, European journal of experimental biology, 3(2):266-270.
  12. Austin C (2005) Irises a gardeners encyclopedia, Timber Press. pp.54-103
  13. Borzouei A, Kafi M, Sayahi R, Rabiei A and Sayed-Amin P(2013) Biochemical response of two wheat cultivars (Triticum aestivum) to gamma  radiation. Pak. J. Bot, 45(2): 473-477.
  14. Chen Z AC, Tracey Z, Meixue T, Amanda P, Bodapati N and Sergey S ( 2007) Compatible solute accumulation and stress- mitigating effects in barley genotypes contrasting in their salt tolerance, Environ. Exp. Bot, 58: 4245-4255.
  15. Data SK (2009) Role of classical mutagenesis for development of new ornamental varieties, Food and agriculture organization of the united nation, pp. 300-302.
  16. Datta SK (2009) A report on 36 years of practical work on crop improvement through induced mutagenesis , Food and agriculture organization of the united nation, pp. 253-256.
  17. Datta SK and Basu RK (1977 ) Abnormal plant growth in M1 and C1 generation of two species of Trichosanthes, Transactions of Bose Research Institute, 40(3): 63-67.
  18. Esfandiari E, Shakiba MR,Ahboob SA, Alyari H and Shahabirand S(2008) The effect of water stress on antioxidant content, protective enzyme activities, proline content and lipid per oxidation in seedling wheat, Pak. J. Biol. Sci, 11(15).
  19. ErtanSK (2009) Influence of gamma irradiation on pollen viability, germination ability and fruit and seed-set of pumpkin and winter squash, African journal of biotechnology, 8(24): 6918-6926.
  20. GuangSY, Lang WZ and Yun GK(2007) Karyotypical studies on thirteen Iris plants from China, Acta phytotaxonomica Sinica, 45(5): 601-618.
  21. Girija M, Dhanavel D and Gnanamurthy S(2013) Gamma rays and EMS induced flower color and seed mutants in coepea (Vigna unguiculatal. Walp), Advances in applied sxience research, 4(2): 134-139.
  22. Gunckel JE and Sparrow AH, 1961. Ionizing radiation, biochemical, physiological and morphological aspects of their effects on plants, Encycl. Plant physiol. Springer verlag.berlin, pp. 555-611.
  23. Irigoyn JJ, Emerich DW, and Sanchez M (1992) Water stress induced change in concentration of proline and total soluble sugars in nodulated alfalfa (Meducago sativa) plants, Physiol. Plant, 84: 55-60.
  24. Jala A (2011) Morphological change due to effects of acute gamma ray on wishbone flower (Torenia fourmieri) in vitro, International transaction journal of engineering management and applied sciences and technologies, 4(2):375-383.
  25. Koing A, Lai A, Hussein S and Harun AR(2008) Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation, Awer-eurasian.J.Sustain Agric, 2: 135-149.
  26. Krizek DT, Kramer GF, Upadyaya A and Mirecki RM(1993) UV-B response of Cucumber seedling grown under metal halide and high pressure sodium deluxe lamps, Physiol. Plant, 88: 350-358.
  27. Levan A, Fredge K and Sandberg A (1964) Nomenclature for centromeric position on chromosome. Hereditas, 52: 201-220.
  28. Levitt J (1980) Responses of plants to environmental stress:water. Radiation. Salt and other stress, Academic press. New york, 520.
  29. Miodzinska E (2009) Survey of plant pigments. Molecular and environmental determinants of plant colors, Acta biologica cracoviensia series botanica, 51(1): 7-16.
  30. Mohajer S, Taha RM, Lay MM, Esmaeili AK and Khalili M(2014) Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behavior, and nutritional composition of Saindoin (Onobrychis viciifolia scop), The sciebtific world journal, 9.
  31. Mongaiyarkarasi R, Cirija M and Gnanamurthy S(2014) Mutagenic effectiveness and efficiency of gemma rays and ethyl methane sulphonate in Catharanthus roseus, Int.J.Curr.Microbiol.App.Sci, 3(5): 881-889.
  32. Moghaddam S, Jaafar H, IbrahimR, Rahmat A, Aziz AM and Philip E(2011) Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centlla asiatica, Molecules, 16(6): 4994-5007.
  33. Ozkan M and Kandemir NSG(2001) Karyological study on some endemic Iris l. species from turkey, J.Bot, 33(2): 167-171.
  34. Patil, SD., Patil, HE. and Dhaduk, BK. (2010a). Response of gamma radiation on vegetative and floral characters of commercial varieties of gladiolus (Gladiolus grandiflorus L.), Abst. National Symposium on Life Style Floriculture: Challenges and Opportunities, YSPU H&F, Nauni, Solan (H.P.), pp. 21.
  35. Rahimi VM, Sadat-Hosseini Grouth A, Solymani N, Bahermand B and Meftahizade H(2011) Assessment of cytological and morphological variation among Iranian native Iris species, African journal of biotechnology, 10(44): 8805-8815.
  36. RanganaS (1977) Mannual for analysis of fruit and vegetable products, TATA Mcgraw hill co. PVT. ITD. New Delhi,pp. 73-76.
  37. Rodríguez G, Strecker J,  Brewer M, GonzaloMJ, Anderson C, LangL, SullivanD, WagnerE, Strecker B, DrushalR, DujmovicN, FujimuroK, Josh ThomasJ, GraySand Knaap E(2010)Tomato Analyzer User Manual Version 3. Ohaio university.
  38. Sheligl HQ (1986) Die verwertung orgngischer souren durch chiorella lincht, Planta Journal, pp. 47- 51.
  39. Suzuki KI, Xue HM, Tanka Y, Fukuchi-Mizutani M, murakami Y, Katsumoto Y, Tsuda S and Kasumi T(2000) Flower color modification of torenia hybrid by cosuppression of anthocyanin biosynthesis genes, Mol. Breed, 6:239-246.
  40. Sparrow AH, Moses MJ and Dubow R (1952) Relationship between ionizing radiationchromosomes breakage and certain other nuclear disturbances, Experimental cell research suppl, 2: 245-267.
  41. Singh BD (1996) Mutation induction and detection, Kalyani publishers, Ludhiana.
  42. Strid A,Chow W and  Anderson J(1990) Effects of supplementary gamma irradiation on photosynthesis in Pisum sativum. Biochemistry, pp.260-268.
  43. Taheri STL, Abdullah Z, Ahmad Z and Abdullah NAP(2014) Effect of acute gamma irradiation on Curcumaalismatifolia varieties and detection of DNA polymorphism through SSR marker,Biomed research international.
  44. Thohirah LA, Johari E and Nazir M(2009) Change in flower development, chlorophyll mutation and alteration in plant morphology of Curcuma Alismatifolia by gamma irradiation, Amer.J. Applied Sci, 6(7): 1436-1439.
  45. Thoday JK (1951) The effects of ionizing radiations on the broad bean root. IX. Chromosomes breaks and the lethality of ionizing radiations to the root meristem. British Journal of Radiology, 24: 572- 576, 622-628.
  46. Witham FH, Blaydes DF and Devlin RM (1971)Experiments in plant physiology. Van nostrand new york. 245.
  47. Wagner GJ (1979) Content and vacuole/extra vacuole distribution of netural sugars, Free amino acid and Anthocyanins in protoplasts, Plant physiology, 64: 88-93.
  48. Wipaporn ST, Thunya JP and Shinji K(2011) Effects of gamma ray irradiation in plant morphology of interspecific hybrids between Torenia foyrnieri and Torenia baillonii, Kasetsart. J, 45: 803-810.