بررسی میزان سازگاری در تلاقی برخی از ارقام و ژنوتیپ‌های مختلف بادام با استفاده از میکروسکوپ فلورسنت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه شاهد، تهران، ایران

2 استادیار گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه شاهد، تهران، ایران

3 استادیار گروه مهندسی فضای سبز، دانشکدۀ کشاورزی، دانشگاه ملایر، همدان، ایران

4 دانشیار، بخش باغبانی، مؤسسۀ تحقیقات اصلاح و تهیۀ نهال و بذر، کرج، ایران

چکیده

با توجه به خودناسازگاری و گاهی دگرناسازگاری بیشتر ارقام و ژنوتیپ‏های بادام، در این مطالعه سازگاری و میزان نفوذ لولة گرده در مادگی 3 گروه ترکیب تلاقی‏ بین 2 رقم و 3 ژنوتیپ بادام، در دانشگاه شاهد در سال 1392 انجام گرفت. گروه اول شامل والد مادری ژنوتیپ ’‌A9.7» با والدهای پدری رقم ’‌Tuono‌‘ و ژنوتیپ‏های ’‌A230‌‘، ’‌A10.11‌‘، ’‌A8.39‌‘، گروه دوم شامل والد مادری رقم ’شکوفه ‘‌با والدهای پدری ارقام ’سهند‌‘ و ’‌Tuono‌‘ و ژنوتیپ‏های ’‌ A230‌‘، ’‌A1.16‌‘ و گروه سوم شامل والد مادری رقم ’‌Tuono‌‘ با والدهای پدری رقم ’سهند‌‘ و ژنوتیپ‌های ’‌A230‌‘، ’‌A1.16‌‘ و ’‌A9.7‌‘ بودند. مادگی‏های تلقیح‌شده 120 ساعت پس از گرده‏افشانی، جدا شد‌ و میزان نفوذ لولة گرده در مادگی با میکروسکوپ فلورسنت بررسی شد. ترکیب تلاقی ’‌Tuono’ × ♂ ‘A9.7»♀ (با میانگین تعداد 33/3 لولة گردۀ نفوذ‌کرده به تخمدان)، ’‌A9.7’ × ♂‘A8.39‌‘ ♀ )با میانگین تعداد 33/4 لولة گردۀ نفوذ‌کرده به تخمدان) و ’‌A1.16‌‘ ♂× ’‌‌شکوفه‌‘ ♀ (با میانگین تعداد 33/4 لولة گردۀ نفوذ‌کرده به تخمدان) دارای بیشترین تعداد لولة گردۀ نفوذ‌کرده به تخمدان و بیشترین سازگاری در بین ترکیب تلاقی‏های به‏کار‌رفته در گروه‏های مختلف را داشتند. همچنین‌ ترکیب تلاقی‏های ’سهند‌‘ ♀‘Tuono’ × ♂ و ‘A9.7’ × ♂‘A230’♀ فقط دارای یک لولة گردۀ وارد‌شده به تخمدان بود که نشان از مشکوک‌بودن سازگاری دانه‏گرده و تخمک در این ترکیب تلاقی داشت. با توجه به میزان سازگاری و درصد تشکیل میوه در تلاقی‏های انجام‌شده، برای دستیابی به عملکرد مطلوب، می‏توان از گرده‌دهنده‏های ’‌A9.7‌‘، ’‌A1.16‌‘ و ’سهند‌‘ به‌ترتیب برای والدهای مادری ’‌Tuono‌‘، ’‌A9.7‌‘ و ’شکوفه‌‘ استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Pollen tube growth track and determination of compatibility in almond

نویسندگان [English]

  • Mehdi Fallah 1
  • yavar Sharafi 2
  • Mousa Rasouli 3
  • Ali Imani 4
1 M.Sc. Student. Department of Horticulture, Faculty of Agriculture, Shahed University, Tehran, Iran
2 Assistant Professor, Department of Horticulture, Faculty of Agriculture, Shahed University, Tehran, Iran
3 Assistant Professor, Department of Horticulture and Landscape engineering, Faculty of Agriculture, Malayer University, Malayer, Iran
4 Associate Professor, Horticultural Departments of Seed and Plant Improvement Institute (SPII), Karaj, Iran
چکیده [English]

Almond is one of the most important species of genus prunus. Most almond cultivars and genotypes are Self-incompatible and some of others are cross-incompatible. In this study compatibility and frequency pollen tube penetrate in the ovary were performed in three groups. The first group included the genotype A9.7 as female parent and Tuono with genotypes A230, A10.11, A8.39 as male parents, the second group contained Tuono as the female parents, the Sahand cultivar with genotypes A230, A1.16 and A9.7 as male parents and third group included Shokofeh cultivar as the female parent with genotypes Sahand,Tuono and A230, A1.16 as male parent were. 120 hours after controlled crosses, pistils fertilized with different pollens, isolated and the frequency of pollen tube growth was evaluated by Florescence microscope in different parts of pistils. Results showed that crosses ♂A9.7×♀ Tuono (mean 3.33 pollen tube penetrates in the ovary) ♂A 8.39 ×♀ A9.7 (average 4.33, pollen tube penetrates in the ovary) and ♀A1.16 × ♀Shokofeh (average of 4.33pollen tube penetrates in the ovary) highest number of pollen tubes penetrated to ovary and so they are very compatible for orchard establishment and crossing programs. With respect to compatibility and percentage of fruit set in Crosses, to achieve optimum performance can of pollinizer A9.7, A1.16 and Sahand In order to female parent Tuono, A9.7 and Shokofeh were used.

کلیدواژه‌ها [English]

  • crosses
  • Cross-Compatible
  • Self incompatibility
  • ovary
  • Pollen tube growth
1. ایمانی ع و طلایی ع (1377) «تأثیر نوع محیط کشت بر جوانه‏زنی دانه‏گردۀ بادام در کشت In-vitro». علوم کشاورزی ایران. 29(1): 87-79.
2. رسولی م و ارزانی ک (1389) «اثر نوع دانة گرده بر چگونگی رشد لولة گرده و صفات کمّی و کیفی میوۀ گیلاس (Prunus aviumL.) رقم زرد دانشکده». علوم باغبانی ایران. 41(4): 309‌ـ 318.
3. رسولی م، فتاحی‏مقدم م ر، زمانی ذ، ایمانی ع و عبادی ع (1388) «بررسی سازگاری و تأثیر گرده‏افشانی تکمیلی رقم ’سوپرنووا‘ با گردۀ ارقام مختلف بادام». علوم باغبانی ایران. 40(4): 61‌ـ 70.
4. شرفی ی (1389) «تعیین روابط سازگاری گرده با مادگی در چند ژنوتیپ امیدبخش بادام با روش‏های کلاسیک و مولکولی». دانشگاه تبریز. تبریز. رساله دکتری.
5. مؤمن پور ع، عبادی ع و ایمانی ع (1390) «تعیین میزان خودناسازگاری در نتاج به‌دست‌آمده از تلاقی ارقام ’تونو‘ و ’شاهرود 12‌‘ به وسیلۀ میکروسکوپ فلورسنس». پژوهش‏های تولیدات گیاهی. 18(2): 25‌ـ 44.
6. Alonso JM and Socias i Company R (2005) Self-incompatibility expression in self-compatible almond genotypes may be due to inbreeding. American Society for Horticultural Sciences. 130: 865-869.
7. Ballester J, Boskovic R, Batlle I, Arus P, Vargas F and Vicente de MC (1998) Location of the self-incompatibility gene on the almond linkage map. Plant Breeding. 117: 69-72.
8. Ben-Nijama N and Socias i Company R (1995) Characterization of some self-compatible almonds I pollen tube growth. Horticulture Science. 30: 318-320.
9. Dicenta F, García JE and Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. Horticultural Sciences. 68: 113-120.
10. Felipe AJ (1977) Almendro. Estados fenologicos. The Economics of Information Technology. 27: 8-9.
11. Ortega E and Dicenta F (2003) Inheritance of self-compatibility in almond: breeding strategies to assuar self-compatibility in the progeny. Theoretical and Applied Genetics. 106: 904-911.
12. Ortega E, Martinez-Garca P, Dicenta F, Boskovic R and Tobutt KR (2002) Study of self-compatibility in almond progenies from self-fertilization by florescence microscopy and stylar ribonuclease assay. Acta Horticulturae. 591: 229-232.
13. Sanchez-Perez R, Dicenta F and martinez-Gomez P (2004) Identification of S-alleles in almond using multiplex PCR. Euphytica. 138: 263-269.
14. Sharafi Y, Hajilou J, Mohammadi SA, Dadpour MR and Eskandari S (2010) Analysis of compatibility relationships among almond genotypes using fruit set and fluorescence microscopy. African Journal of Microbiology Research. 4(20): 2079-2085.
15. Socias i Company R, Kester DE and Bradley MV (1976) Effect of temperature and genotype on pollen tube growth in some self-compatible and self-incompatible almond cultivars. Horticultural Sciences. 101: 490-493.
16. Socias i Company R (1990) Breeding self-compatible almonds. Plant Breeding Review. 8: 313-338.
17. Socias i Company R and Felipe AJ (1994) Cross-incompatibility of ‘Ferragne` s’ and‘Ferralise’: Implication for self-compatibility transmission in almond. Acta Horticulturae. 224: 307-31.
18. Sosias i Company R and Alonso JM (2004) Cross-incompatibility of “Ferralis” and “Ferragnes” and pollination efficiency for self-compatibility transmission in almond. Euphytica. 135: 333-338.
19. Sutherland BG, Tobutt KR and Robbins TP (2008) Trans-specific S-RNase and SFB alleles in prunus self-incompatibility haplotypes. Molecular Genetic Genomics. 279: 95-106.
20. Tabebayashi N, Brewer PB, Newbigin E and Uyenoyama MK (2003) Patterns of variations within self-incompatibility loci. Molecular Biology and Evolution. 20: 1778-1794.
21. Tamura M, Ushijima K, Sassa H and Hirano H (2000) Identification of self- incompatibility genotypes of almond by allele- specific PCR analysis. Theoretical and Applied Genetics. 101: 344-349.
22. Vezvaei A (1994) Pollination studies in almond. Department of Horticulture Viticulture and Oenology wait Agricultural research institute the University of Adelaide South Australia. Pp. 145-161.