The study of salinity tolerance in cumin ecotypes at germination stage

Document Type : Research Paper

Authors

1 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Birjand, Birjand, Iran

2 Former M.Sc. Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Birjand, Birjand, Iran

3 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Birjand, Birjand, Iran

Abstract

Due to the increasing of saline lands and the lack of suitable lands for agriculture, the identification of tolerant medicinal plants to salinity is very important. In this research were studied the seeds laboratory characteristics of different ecotypes of cumin in the Research Laboratory of Birjand University under salt stress and normal conditions in 2014. The experiment was carried out as a factorial in a completely randomized design with two factors and three replications. Factor A included 10 ecotypes (Sabzevar, Khousf, Quchan, Sarayan, Kashmar, Gonabad, Zirkooh, Esfarayen, Tabas and Torbate Jam) and factor B included five levels of salinity of NaCl (One, three, five, seven and nine ds/m). Analysis of variance showed that different ecotypes had significant differences at the 1% level in all traits, except seedling dry weight, and radicle/shoot length ratio. In general, most of traits decreased with increasing salinity levels. Ecotype × stresses interactions comparisons showed that the Kashmar and Ghoochan ecotypes at three dS/m and Esfarayen and Gonabad ecotypes at one and five dS/ m had highest and lowest amount of measured traits, respectively. Cluster analysis at 1 and 9 ds/m levels grouped ecotypes into three major groups. Group 1 (Kashmar, Zirkooh, Sarayan, Torbate Jam, Tabas, Gonabad and Sabzevar) and group 3 (Khousf and Sabzevar) had maximum resistance to salinity stress at 1 ds/m and 9 ds/m levels, respectively. At 3 ds/m level, ecotypes were classified in four group, in which the group 3 (Sabzevar, Kashmar and Gonabad) had maximum resistance. At 5 and 7 ds/m levels were recognized four main groups of ecotypes and in both level, group 4 (Sabzevar) had maximum resistance. In general, ecotype Sabzevar had the highest resistance at all levels of salinity.

Keywords


  1. پژمان مهر م، حسنی م ا، فخرطباطبایی س م (1387) بررسی تنوع ژنتیکی برخی از توده­های زیره کرمان با نشانگرهای RAPD. مجله علوم باغبانی ایران. 39(1):65-57.
  2. تدین م ر، امام ی (1386) واکنش­های فیزیولوژیک و مورفولوژیک دو رقم جو به تنش شوری و ارتباط آن با عملکرد دانه. مجله علوم و فنون کشاورزی و منابع طبیعی، 1: 262-253.
  3. دوازده امامی س (1381) اثر تنش شوری بر خصوصیات جوانه­زنی بذر 10 گونه گیاه دارویی. چکیده مقالات هفتمین کنگره علوم زراعت و اصلاح نباتات ایران. مؤسسه تحقیقات اصلاح و تهیه نهال و بذر کرج. 572-571.
  4. سلامتی م، زینلی ح (1392) بررسی تنوع ژنتیکی جمعیت­های مختلف زیره سبز با استفاده از صفات موفولوژیک. تحقیقات گیاهان دارویی و معطر ایران، 29 (1):62- 51.
  5. سلامی م، صفرنژاد ع، حمیدی ح (1384) اثر تنش شوری بر خصوصیات مورفولوژی زیره سبز و سنبل الطیب. پژوهش و سازندگی در منابع طبیعی. 72(1): 21-14.
  6. صفر نژاد ع، حمیدی ح (1384) اثر تنش شوری بر جوانه­زنی و رشد گیاه‌چه برخی از گیاهان دارویی. مجموعه مقالات همایش ملی توسعه پایدار گیاهان دارویی ادویه­ای و معطر. دانشگاه آزاد اسلامی واحد شهر کرد. 41-40.
  7. صفرنژاد ع، حمیدی ع (1387) بررسی ویژگی­هایی مورفولوژی رازیانه تحت تنش شوری. فصلنامه تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران. 16(1): 140-125.
  8. موحدی م، فرهنگیان کاشانی س، منعم ر، رحیم لی م، ادیب دو گاهه م، مولازاده ص (1391) بررسی اثر تنش شوری بر جوانه‌زنی و رشد اولیه پنج گونه دارویی گل راعی، رازیانه، بابونه، زیره سبز و بومادران. فصلنامه گیاه و زیست بوم. 8(1-33): 15-3
  9. میر محمدی میبدی ع.م. و قره یاضی ب (1381) جنبه های فیزیوژیک و به­نژادی تنش شوری گیاهان. مرکز نشر دانشگاه صنعتی اصفهان. 274 صفحه.
  10. کافی م (1381). زیره سبز: فناوری، تولید، فروآوری. چاپ اول. دانشگاه فردوسی مشهد، مشهد. 126-121.
  11. نبی­زاده مرودشت م، کافی، م، راشد محصل م، 1382. اثرات شوری بر رشد، عملکرد، تجمع املاح و درصد اسانس زیره سبز. مجله پژوهش­های زراعی ایران. 1(1): 60-53.
  12. نورانی ح. و حاجی باقری م (1387) تأثیر تنش شوری بر روی برخی از ویژگی­های فیزیولوژیک گیاه شوید، فصلنامه بوم­شناسی گیاهان زراعی 14 (12): 100-93.
  13. Bajji M, Kinet JM and Lutts S (2002) Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae.) Canadian Journal of Botany. 80: 297-304.
  14. Bloom A and Epstein EE (1984) Varietal differences in salt induced respiration in barely. Plant Physiology.
  15. 90:1444-1456.
  16. De M, De AK, Mukhopadhyay R, Banerjee AB and Miro YM (2003) Antimicrobial activity of (Cuminum cyminum L.) Ars Pharmaceutica. 44: 257-269.
  17. Fernando EP, Boero C, Gallardo MM and Gonzalez GA (2001) Effects of NaCl on germination and growth on canola cultivars. Annual Review, Plant Physiology. 28:89-121.
  18. Hassanzadehdelouei M, Vazin F, and Nadaf J (2013) Effect of salt stress in different stages of growth on qualitative and quantitative characteristics of cumin (Cuminum cyminum L.). Cercetari Agronomice in Moldova. 46( 1): 89-97.
  19. Jamil M, Lee D, Jung, KY, Ashraf M, Lee SC and Rha ES (2006) Effect of salt stress on germination and early seedling grown of four vegetables species. Journal of Central European Agriculture. 7: 273-282.
  20. Katergi N, Van Hoorn JW, Hamdy A, Karam F and Mastrortilli M (1994) Effect of salinity on emergence and on water stress early seedling growth of sunflower and maize. Agricultural Water Management. 26: 81-91.
  21. Maguire JD (1962) Speed of germination-aid in selection and evaluation for seedling emergence and vigor Crop Science. 2:176-177.
  22. Mahdavi H and Omidi H (2014) Effect of accelerators on seed vigor and germination of medicinal plant (Cuminum cyminum L.) under salt stress. 3rd National congress on medicinal plants 14, 15 May 2014 Mashhad- Iran.
  23. Mittler R (2002) Oxidative stress, antioxidant and stress tolerance. Trends in Plant Science. 7: 405-410.
  24. Mozaffarian V (1983) The Family of Umbelliferae in Iran: Keys and Distribution, Tehran, Research Institute of Forests and Rangelands Press. pp. 114-116.
  25. Pandey S, Patel MK, Mishra A, Jha B (2015) Physio-biochemical composition and untargeted metabolomics of cumin (Cuminum cyminum L.) make it promising functional food and help in mitigating salinity stress. Available at http://www.journals.plos.org/plosone/article?id=10.1371/journal.pone.
  26. Pujol JA, Calvo JF and Ramirez-Diza L (2000) Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain. Annals of Botany. 85: 279-286.
  27. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP and Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biology Biochemistry. 39: 2661-2664.
  28. Redman RE, Ql MQ and Belyk M (1994) Growth of transgenic and standard canola varieties in response to soil salinity. Plant Science. 74: 797-799.
  29. Rehman SP, Harris JC, Bourne WF and Wilkin J (1997) The effect of sodium chloride on germination and the potassium and calcium contents of Acacia seeds. Seed Science and Technology. 25: 45-57.
  30. Roodbari N, Lahooti M, Roodbari SH, Aein A and Ganjali A (2013) The Effect of Salinity Stress on Germination and Seedling Growth of Cumin (Cuminum cyminum L.). Journal of Agriculture and Food Technology, Tech., 3(5)1-4.
  31. Rubio-Casal AE, Castillo JM, Luque CJ and Figueroa ME (2003) Influence of salinity on germination and seeds viability of two priming colonizers of Mediterranean salt pans. Journal of Arid Environments. 53: 145-154.
  32. Breusegem FV, Vranova E, Dat JF and Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Science. 161: 405-414.
  33. Werner JE and Finkelstein RR (1995) Arabidopsis mutant with reduced response to NaCl and osmotic stress. Physiologia Plantarum. 93: 659-666.
  34. Zhu Z, Liang Z, Han R and Wang X (2009) Impact of fertilization on drought response in the medicinal herb Bupleurum chinense DC. Growth and saikosaponin production. Industrial Crops and Products. 2-3 (29): 629-633.