تعیین دُز مناسب و بررسی تأثیر پرتوگاما بر صفات جوانه‌زنی و رشد گیاهچه Arnica chamissonis ssp. Foliosa

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیولوژی و اصلاح گیاهان دارویی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی تهران، تهران، ایران

2 دانشیار، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی تهران، تهران، ایران

3 مربی، پژوهشکده کشاورزی، پزشکی و صنعتی هسته‌ای کرج، کرج، ایران

4 دانشیار، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

آرنیکای چامیسو با نام علمی Arnica chamissonis  ssp. foliosa گیاهی چندساله، ریزوم‌دار، با مصارف دارویی از خانواده کاسنی و بومی آمریکای شمالی و کانادا است. القای جهش روشی کاربردی برای افزایش تنوع ژنتیکی در جهت دستیابی به اهداف اصلاحی می‌باشد. هدف از انجام این تحقیق، بررسی تأثیر دُزهای مختلف اشعه گاما (0، 100، 200، 300، 400 و 500) بر صفات جوانه‌زنی و رشد گیاهچه بذر Arnica chamissonis(نظیر طول ساقه­چه، طول ریشه­چه، درصد، سرعت و میانگین جوانه­زنی، شاخص بنیه بذر، وزن ‌تر و خشک ریشه­چه، وزن ‌تر و خشک ساقه­چه) و تعیین دُز مناسب به­منظور القای جهش بود. تیمار بذر با پرتوگاما پارامترهایی نظیر طول ساقه­چه، طول ریشه­چه، درصد جوانه‌زنی، سرعت و میانگین جوانه­زنی، شاخص بنیه بذر، وزن‌تر ریشه­چه، وزن‌تر و خشک ساقه چه (01/0≥P)، و همچنین وزن خشک ریشه­چه (05/0≥P) را به‌طور معنی­دار تحت تأثیر قرارداد. دُز 200 گری بهترین تأثیر را در بهبود شاخص­های جوانه­زنی این‌ گونه نشان داد. دُز 300 گری و بالاتر اثر کاهشی بر تمامی صفات مورد بررسی نسبت به شاهد داشت که این امر می­تواند مربوط به اختلالات متابولیسمی ناشی از تولید رادیکال­های آزاد باشد که در اثر پرتودهی ایجاد می­شوند و از رشد جنین جلوگیری می­کنند. دُز LD50، 226/275 گری و دُز مناسب پرتودهی جهت القای جهش 02/181 گری تعیین شد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of gamma ray treatment on seed germination and seedling growth traits Arnica chamissonis Less. ssp. foliosa and suitable gamma ray dose determination in order to induce genetic variation

نویسندگان [English]

  • Mojdeh Asadi 1
  • Javad Hadian 2
  • behnam naserian 3
  • Ghasem Karimzadeh 4
1 M. Sc. Student of Physiology and Breeding of Medicinal Plants, Medicinal Plants and Drug Research Institute, Shahid Beheshti University of Tehran, Iran
2 Associate Professor, Medicinal Plants and Drug Research Institute, Shahid Beheshti University of Tehran, Iran
3 Instructor, Agricultural Research Institute, Medical and Nuclear Industries Karaj, Iran
4 Associate Professor, Tarbiat Modarres University, Faculty of Agriculture, Department of Plant Breeding and Biotechnology, Iran
چکیده [English]

Arnica chamissonis Less. ssp. foliosa is a herbaceous perennial belonging to the Asteraceae family and endemic to north America and Canada. Inducing genetic mutation is a practical approach to increase genetic diversity for breeding purposes. Effect of different gamma radiation doses (0, 100, 200, 300, 400 and 500 gray) on seed germination and seedling growth of A chamissonis (e. g. plumule and rootlet length, germination percentage, speed and mean, seedling vigor, plumule fresh and dry weight, rootlet fresh and dry weight was measured and the proper dose for mutation induction was assessed. Gamma radiation caused significant effect on parameters such as plumule and rootlet length, germination percentage, germination rate, seedling vigor, rootlet fresh weight, plumule fresh and dry weight (P≤0.01) and also rootlet dry weight (P≤0.05). Radiation with 200 gray showed the most promising effects on germination parameters of this species. Compared to the control treatment, radiation with 300 gray and higher caused adverse effects on all mentioned parameters which may be caused by producing free radicals. An LD50 of 226.275 gray was estimated for this species and the best estimated dose to induce highest genetic mutation was 181.02 gray.

کلیدواژه‌ها [English]

  • Arnica
  • adaptation
  • exposure
  • Genetic diversity
  • germination speed
  • mutation
  1. پیرزاد ع، علیزاده م، حسن­زاده قورت­تپه ع، و درویش‌زاد ر (1393). تأثیر پرتو گاما پیش از جوانه­زنی و سطوح مختلف نیتروژن بررشد و عملکرد بابونۀ آلمانی، نشریه به‌نژادی کشاورزی، 17(2): 411-297.
  2. حسینی ف (1387). بررسی اثر فرسودگی بذر بر جوانه‌زنی، استقرار و عملکرد پنج رقم کلزا در شرایط آب‌وهوایی اهواز. پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی و منابع طبیعی اهواز. 258 صفحه.
  3. قنادها م (1367). یک مطالعه روی حساسیت گونه‌ها و ارقام  مختلف غلات و بقولات نسبت به مقادیر مختلف اشعه گاما، پایان‌نامه کارشناسی ارشد، دانشگاه تهران، دانشکده کشاورزی.
  4. عبدالرحمنی ب، قاسمی گلعذانی ک، ولی زاده م، فیضی اصل و، و توکل ا (1388). اثر پرایمینگ بذر بر قدرت رویش و عملکرد دانه جو رقم آبی در شرایط دیم. مجله علوم زراعی ایران، ص377-352.
  5. عیسوند ح، و مداح عارفی ح (1386). بررسی اثر برخی تنظیم‌کننده­های رشد گیاهی بر کیفیت فیزیولوژیک بذرهای پیر شده گیاه Bromus inermis. فصلنامه علمی- پژوهشی تحقیقات ژنتیک و اصلاح گیاهان مرتعی و جنگلی ایران، 15(2):159-171.
  6. مجد ف، و اردکانی م (1384). تکنیک­های هسته­ای و علوم کشاورزی، انتشارات دانشگاه تهران. 381 صفحه.
  7. Abdul-Baki, A. A. and Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop science, 13(6), 630-633.
  8. Alizadeh, O., Zare, M. and Ganji, A. (2012). Effects of different radiation gamma ray doses on sesame seed variation process, quantitative and qualitative characters in Firouz-abad, Fars.
  9. Antonov, M., Velichov, P., Tsonov, T. S. and Angelov, M. (1989). Effect of gamma and laser irradiation on maize seeds and plants. In ESNA XXth annual meeting, Wageningen, The Netherlands (Vol. 44).
  10. Brock, R. D. (1977). Prospects and perspectives in mutation breeding. In Genetic diversity in plants (pp. 117-132). Springer US.
  11. Cantliffe, D. J. (1991). Benzyladenine in the priming solution reduces thermodormancy of lettuce seeds. HortTechnology, 1(1), 95-97.
  12. Cemalttin, Y., A. D. Turkan, K. M. Khawar, M. Atac and S. Ozcan.( 2004). Use of gamma rays to induce mutations in four pea (Pisum sativum L.) cultivars. Turk. J. Biol. 30: 29-37.
  13. Charbaji, T. and Nabulsi, I. (1999). Effect of low doses of gamma irradiation on in vitro growth of grapevine. Plant cell, tissue and organ culture, 57(2), 129-132.
  14. Chaudhuri, S. K. (2002). A simple and reliable method to detect gamma irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test. Radiation Physics and Chemistry, 64(2), 131-136.
  15. Chauhan, Y. S. and Kumar, K. (1986). Gamma ray-induced chocolate seeded mutant in Brassica campestris var yellow sarson. Current Science (Bangalore), 55(8), 410.
  16. Chiapusio, G., Sanchez, A. M., Reigosa, M. J., Gonzalez, L. and Pellissier, F. (1997). Do germination indices adequately reflect allelochemical effects on the germination process. Journal of Chemical Ecology, 23(11), 2445-2453.
  17. Chung, B. Y., Lee, Y. B., Baek, M. H., Kim, J. H., Wi, S. G. and Kim, J. S. (2006). Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S. Radiation Physics and Chemistry, 75(9), 1018-1023.
  18. Gustafsson, Å., Lundqvist, U. and Ekberg, I. (1966). The viability reaction of gene mutations and chromosome translocations in comparison. Mutations in plant breeding. Vienna: IAEA-FAO, 103-107.
  19. Harten, A. M. (1998). Mutation breeding: theory and practical applications. Cambridge University Press.
  20. Irfaq, M. and Nawab, K. (2001). Effect of gamma irradiation on some morphological characteristics of three wheat (Triticum aestivum L.) cultivars. J. Biol. Sci, 1(10), 935-945.
  21. ISTA. (1985). International Seed Testing Association. ISTA Handbook on Seedling Evaluation, 130 p.
  22. Kianian, P. M., Liberatore, K. L., Miller, M. E., Hegstad, J. B. and Kianian, S. F. (2016). Dissecting Plant Chromosomes by the Use of Ionizing Radiation. Plant Cytogenetics: Methods and Protocols, 91-101.
  23. Kim, J. H., Baek, M. H., Chung, B. Y., Wi, S. G. and Kim, J. S. (2004). Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds.Journal of Plant Biology, 47(4), 314-321.
  24. Kiong, A. L. P., Lai, A. G., Hussein, S. and Harun, A. R. (2008). Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. American-Eurasian journal of sustainable agriculture, 2(2), 135-149.
  25. Kovacs, E. and Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210.
  26. Lisowska, K. and Wysokinska, H. (2000). In vitro propagation of Catalpa ovata G. Don. Plant cell, tissue and organ culture, 60(3), 171-176.
  27. Lyss, G., Schmidt, T. J., Merfort, I. and Pahl, H. L. (1997). Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-κB. Biological chemistry, 378(9), 951-962.
  28. Maity, J. P., Mishra, D., Chakraborty, A., Saha, A., Santra, S. C. and Chanda, S. (2005). Modulation of some quantitative and qualitative characteristics in rice (Oryza sativa L.) and mung (Phaseolus mungo L.) by ionizing radiation. Radiation Physics and Chemistry, 74(5), 391-394.
  29. Møller, A. P. and Mousseau, T. A. (2016). Are Organisms Adapting to Ionizing Radiation at Chernobyl. Trends in ecology & evolution, 31(4), 281-289.
  30. Moussa, H. R. (2006). Gamma irradiation regulation of nitrate level in rocket (Eruca vesicaria subsp. sativa) plants. Journal of New Seeds, 8(1), 91-100.
  31. Nagata, T., Todoriki, S., Hayashi, T., Shibata, Y., Mori, M., Kanegae, H. and Kikuchi, S. (1999). γ-Radiation induces leaf trichome formation in Arabidopsis. Plant physiology, 120(1), 113-120.
  32. Patil, A., Taware, S. P., Oak, M. D., Tamhankar, S. A. and Rao, V. S. (2007). Improvement of oil quality in soybean [Glycine max (L.) Merrill] by mutation breeding. Journal of the American Oil Chemists' Society, 84(12), 1117-1124.
  33. Preuss, S. B. and Britt, A. B. (2003). A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164(1), 323-334.
  34. Saberi, H., Firouzi, M., Habibi, Z., Moshayedi, P., Aghayan, H. R., Arjmand, B. & Yekaninejad, M. S. (2011). Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases: clinical article. Journal of Neurosurgery: Spine, 15(5), 515-525.
  35. Saha, A., Santra, S. C.  and Chanda, S. (2005). Modulation of some quantitative characteristics in rice (Orayza sativa) by ionizing radiation. Radiat. Physic. Chem, 74, 391-394.
  36. Singh, B. and Datta, P. S. (2010). Effect of low dose gamma irradiation on plant and grain nutrition of wheat. Radiation Physics and Chemistry, 79(8), 819-825.
  37. Small, E. and Catling, P. M. (2000). Les cultures médicinales canadiennes. Les Presses scientifiques du CNRC.
  38. Surmacz-Magdziak, A. and Sugier, D. (2012). In vitro propagation of Arnica montana L.: an endangered herbal species of great importance to medicine. Acta Scientiarum Polonorum
  39. Toker, C., Uzun, B., Canci, H. and Ceylan, F. O. (2005). Effects of gamma irradiation on the shoot length of Cicer seeds. Radiation Physics and Chemistry, 73(6), 365-367.
  40. Wagner, S., Suter, A. and Merfort, I. (2004). Skin penetration studies of Arnica preparations and of their sesquiterpene lactones. Planta medica, 70(10), 897-903.
  41. Wani, A. A. and Anis, M. (2008). Gamma ray-and EMS-induced bold-seeded high-yielding mutants in chickpea (Cicer arietinum L.). Turkish Journal of Biology, 32(3), 161-166.
  42. Weremczuk-Jeżyna, I., Kisiel, W. and Wysokińska, H. (2006). Thymol derivatives from hairy roots of Arnica montana. Plant cell reports, 25(9), 993-996.
  43. Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M. H., Lee, J. W. and Kim, Y. S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38(6).
  44. Wiley J, Sons A. Turner, atoms, radiation, and radiation protection. International Journal of Radiation. 1995; 9, 46-87.
  45. Zaka, R., Chenal, C. and Misset, M. T. (2004). Effects of low doses of short-term gamma irradiation on growth and development through two generations of Pisum sativum. Science of the total environment, 320(2), 121-129.